summaryrefslogtreecommitdiff
path: root/setup.py
diff options
context:
space:
mode:
Diffstat (limited to 'setup.py')
-rw-r--r--setup.py35
1 files changed, 17 insertions, 18 deletions
diff --git a/setup.py b/setup.py
index 9efb57c..7bbfd6d 100644
--- a/setup.py
+++ b/setup.py
@@ -146,21 +146,20 @@ def generate_summary(prompt):
if (len(enc.encode(prompt)) > 3000):
return "too long to summarize."
- prompt = prompt + '\nSummarize the above code: '
-
- # response = openai.ChatCompletion.create(
- # model="gpt-3.5-turbo",
- # messages=[{"role": "user", "content": prompt}],
- # temperature=0.7,
- # max_tokens=1024,
- # top_p=1.0,
- # frequency_penalty=0.0,
- # presence_penalty=0.0,
- # stop=["\"\"\""]
- # )
-
- #return response["choices"][0]["message"]["content"]
- return 'herro. this is a test summary'
+ prompt = prompt + '\nSummarize the above code (be succinct): '
+
+ response = openai.ChatCompletion.create(
+ model="gpt-3.5-turbo",
+ messages=[{"role": "user", "content": prompt}],
+ temperature=0.7,
+ max_tokens=300,
+ top_p=1.0,
+ frequency_penalty=0.0,
+ presence_penalty=0.0,
+ stop=["\"\"\""]
+ )
+
+ return response["choices"][0]["message"]["content"]
# create blob. the blob just contains the file path and the source code.
def blobify(pandaSeries):
@@ -234,9 +233,9 @@ def setup(
print('generating embeddings')
embedding_model = "text-embedding-ada-002"
- #code_df["embedding_summary"] = code_df.summary.apply(
- # [lambda x: get_embedding(x, engine=embedding_model)]
- # )
+ code_df["embedding_summary"] = code_df.summary.apply(
+ [lambda x: get_embedding(x, engine=embedding_model)]
+ )
print('done with embeddings')
code_df.to_csv(output_csv_filepath)