summaryrefslogtreecommitdiff
path: root/setup.py
blob: 9efb57cf29c669dba9429c05a7278b88ee397deb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import os
import sys
import pandas as pd
import openai
import tiktoken
from openai.embeddings_utils import get_embedding
from tree_sitter import Language, Parser
from typing_extensions import Annotated
import typer

openai.api_key = os.getenv('END_OF_WORLD')

class TS_Setup_Helper:
    """
    Tree sitter functions and data for the setup process
    """
    parser: Parser
    ts_obj_path: str
    ext_map: dict

    def __init__(self, ts_object_path):
        self.ts_object_path = ts_object_path
        self.BASH_LANGUAGE = Language(ts_object_path, 'bash')
        self.C_LANGUAGE = Language(ts_object_path, 'c')
        self.CPP_LANGUAGE = Language(ts_object_path, 'cpp')
        self.GO_LANGUAGE = Language(ts_object_path, 'go')
        self.HS_LANGUAGE = Language(ts_object_path, 'haskell')
        self.JS_LANGUAGE = Language(ts_object_path, 'javascript')
        self.PY_LANGUAGE = Language(ts_object_path, 'python')
        self.RS_LANGUAGE = Language(ts_object_path, 'rust')
        self.parser = Parser()

        self.ext_map = {
            'sh': self.BASH_LANGUAGE,
            'c': self.C_LANGUAGE,
            'h': self.C_LANGUAGE,
            'cpp': self.CPP_LANGUAGE,
            'cxx': self.CPP_LANGUAGE,
            'hxx': self.CPP_LANGUAGE,
            'hpp': self.CPP_LANGUAGE,
            'go': self.GO_LANGUAGE,
            'hs': self.HS_LANGUAGE,
            'js': self.JS_LANGUAGE,
            'py': self.PY_LANGUAGE,
            'rs': self.RS_LANGUAGE
        }

        self.qmap = {
            self.BASH_LANGUAGE: ["""(function_definition) @function""", """(variable_assignment) @assign"""],
            self.C_LANGUAGE:    ["""(function_definition) @function""", """(preproc_include) @import"""],
            self.CPP_LANGUAGE:  ["""(function_definition) @function""", """(preproc_include) @import"""],
            self.GO_LANGUAGE:   ["""(function_declaration) @function""", """(method_declaration) @method"""],
            self.JS_LANGUAGE:   ["""[(function) (function_declaration)] @function"""],
            self.PY_LANGUAGE:   ["""(function_definition) @function""",
                                 """[(import_statement) (import_from_statement)] @import"""],
            self.RS_LANGUAGE:    ["""(function_item) @function""", """(use_declaration) @import"""]
        }

    def ts_query(self, lang, tree, sexp):
        query = lang.query(sexp)
        return query.captures(tree.root_node)

    def ts_get_all_code_blocks(self, code_blocks, file_path, lang, tree, code):
        """Use treesitter to get all code blocks"""

        results = [ ]
        for query in self.qmap.get(lang):
            results += self.ts_query(lang, tree, query)

        # TODO something like list comprehension here?
        for r in results:
            return_dict = {
                'code_type': r[1],
                'source': code[r[0].start_byte:r[0].end_byte].decode('utf-8'),
                'start_line': r[0].start_point[0],
                'end_line': r[0].end_point[0],
                'chars': r[0].end_byte - r[0].start_byte,
                'file_path': file_path
            }
            code_blocks.append(return_dict)

    def parse_file(self, file_path):
        """take source code file and return pd dataframe"""
        # read file
        with open(file_path[0], 'r') as f:
            code = f.read()

        # Tree-Sitter
        extension = os.path.splitext(file_path[0])[1].lstrip(".")
        lang = self.ext_map.get(extension)
        if lang is None:
            raise NotImplementedError(f"The file extension .{extension} is not implemented ({file_path[0]})")
        self.parser.set_language(lang)
        tree = self.parser.parse(bytes(code, "utf8"))

        code_blocks = []
        self.ts_get_all_code_blocks(code_blocks, file_path[1], lang, tree, bytes(code, "utf8"))

        collate_types = ['import', 'assign']
        tempblock = None
        finblocks = []

        for block in code_blocks:
            if block['code_type'] in collate_types:
                if tempblock is None:
                    tempblock = {k:v for k,v in block.items()}
                elif tempblock['code_type'] == block['code_type']:
                    tempblock['source'] += f"\n{block['source']}"
                    tempblock['start_line'] = min(tempblock['start_line'], block['start_line'])
                    tempblock['end_line'] = max(tempblock['start_line'], block['end_line'])
                    tempblock['chars'] += (block['chars'] + 1)
                else:
                    finblocks.append(tempblock)
                    tempblock = {k:v for k,v in block.items()}
            else:
                if tempblock is not None:
                    finblocks.append(tempblock)
                    tempblock = None
                finblocks.append(block)
        df = pd.DataFrame(finblocks)
        return df


def get_files_to_parse(root_path, files_extensions_to_parse, dirs_to_ignore) -> list:
    """get all source file paths as list."""
    files_to_parse = []
    for root, dirs, files in os.walk(root_path):
        # there may be a better way to do this
        # https://stackoverflow.com/questions/13454164/os-walk-without-hidden-folders
        files = [
                    f for f in files if (not f[0] == '.')
                    and (os.path.splitext(f)[-1].lstrip(".") in files_extensions_to_parse)
                ]
        dirs[:] = [d for d in dirs if (not d[0] == '.') and (set(d.split()).isdisjoint(dirs_to_ignore))]
        for name in files:
            full = os.path.join(root, name)
            rel_dir = os.path.relpath(root, root_path)
            rel_filepath = os.path.join(rel_dir, name)
            if rel_filepath.startswith("./"):
                rel_filepath = rel_filepath[len("./"):]
            files_to_parse.append((full, rel_filepath))
    return files_to_parse

def generate_summary(prompt):
    enc = tiktoken.encoding_for_model("gpt-3.5-turbo")
    if (len(enc.encode(prompt)) > 3000):
        return "too long to summarize."

    prompt = prompt + '\nSummarize the above code: '

 # response = openai.ChatCompletion.create(
 #   model="gpt-3.5-turbo",
 #   messages=[{"role": "user", "content": prompt}],
 #   temperature=0.7,
 #   max_tokens=1024,
 #   top_p=1.0,
 #   frequency_penalty=0.0,
 #   presence_penalty=0.0,
 #   stop=["\"\"\""]
 # )

    #return response["choices"][0]["message"]["content"]
    return 'herro. this is a test summary'

# create blob. the blob just contains the file path and the source code.
def blobify(pandaSeries):
    return f"file path: {pandaSeries['file_path']}\n {pandaSeries['source']}"

def estimate_cost(df, skip_summary: bool):
    enc = tiktoken.encoding_for_model("text-embedding-ada-002")
    print(f'found {len(df.blob)} fns')
    token_count = 0
    for s in df.blob:
        token_count += len(enc.encode(s))
    embed_cost = (token_count / 1000) * 0.0001  # Ada v2
    print(f"it will cost ~${embed_cost:.6f} to generate embeddings")

    if not skip_summary:
        enc = tiktoken.encoding_for_model("gpt-3.5-turbo")
        token_count = 0
        for s in df.blob:
            token_count += len(enc.encode(s))
        summary_cost = ((token_count / 1000) * 0.0015) + ( len(df.blob) * (500/1000) * 0.002)
        print(f"it will cost ~${summary_cost:.6f} to generate summaries (see --skip-summary)")
        print(f"which is ~${embed_cost + summary_cost:.6f} total.")

    if input("\nType yes to continue or anything else to quit: ") != "yes":
        sys.exit(0)
    return


def setup(
        filepath: Annotated[str, typer.Argument(help="path to repo")],
        output_csv_filepath: Annotated[str, typer.Argument(help="filepath for csv output")],
        ignorefile: Annotated[str, typer.Option(help="Path to text file containing dirnames to ignore. One name per line.")] = None,
        skip_summary: Annotated[bool, typer.Option(help="Do not produce summaries for each function (to save cost).")] = False
        ):

    dirs_to_ignore = []
    if ignorefile != None:
        #https://stackoverflow.com/questions/3925614/how-do-you-read-a-file-into-a-list-in-python
        try:
            with open(ignorefile) as file:
                for line in file:
                    line = line.strip()
                    dirs_to_ignore.append(line)
        except:
            print(f"IO error while procesing {ignorefile}", file=sys.stderr)

    ts_helper = TS_Setup_Helper('./ts-languages.so')
    code_df = pd.DataFrame()

    files = get_files_to_parse( filepath, list(ts_helper.ext_map.keys()), dirs_to_ignore)

    if len(files) == 0:
        print("didn't find any files to parse", file=sys.stderr)
        sys.exit(1)
    for file in files:
        #print(file)
        code_df = pd.concat([code_df, ts_helper.parse_file(file)])

    code_df["blob"] = code_df.apply(lambda x: blobify(x),axis=1)

    code_df.to_csv('rust_with_blob.csv')

    estimate_cost(code_df, skip_summary)

    if not skip_summary:
        print('generating summary')
        code_df["summary"] = code_df.blob.apply(lambda x: generate_summary(x))
        print('done with summaries')
    else: 
        code_df["summary"] = "no summary. --skip-summary"

    print('generating embeddings')
    embedding_model = "text-embedding-ada-002"
    #code_df["embedding_summary"] = code_df.summary.apply(
    #        [lambda x: get_embedding(x, engine=embedding_model)]
    #        )
    print('done with embeddings')
    code_df.to_csv(output_csv_filepath)

    sys.exit(0)

if __name__ == "__main__":
    typer.run(setup)
    #setup('YOUR_PATH_HERE', ['ignore', 'dirs', 'here'])
    #setup("../../openpilot/", "./ope.csv",
    #        ['tests', 'vendor', 'unix', 'test', 'debug', 'ui', 'third_party', 'tools', 'system']
    #      )