1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
|
import ast
from collections import defaultdict
import os
import pandas as pd
import openai
import tiktoken
from openai.embeddings_utils import get_embedding, cosine_similarity
from tree_sitter import Language, Parser
SOURCE_DIR = './'
openai.api_key = os.getenv('END_OF_WORLD')
#def get_block(code, node, code_type, file_path):
# """combine a bunch of data about a function. return dictionary"""
# blob = f"{node['pretext']}{ast.get_source_segment(code, node['node'])}"
# return {
# 'code_type': code_type,
# 'source': blob,
# 'start_line': node['node'].lineno,
# 'end_line': node['node'].end_lineno,
# 'chars': len(blob),
# 'file_path': file_path
# }
def ts_query(lang, tree, sexp):
query = lang.query(sexp)
return query.captures(tree.root_node)
def ts_get_all_code_blocks(lang, code_blocks, file_path, tree, code):
"""Use treesitter to get all code blocks"""
# TODO need way to switch between declaration and definition ..
# e.g. golang does not have function definitions according to treesitter
results = ts_query(lang, tree, """(function_declaration) @function""")
results += ts_query(lang, tree, """(method_declaration) @method""")
# TODO something like list comprehension here
for r in results:
return_dict = {
'code_type': r[1],
'source': code[r[0].start_byte:r[0].end_byte].decode('utf-8'),
'start_line': r[0].start_point[0],
'end_line': r[0].end_point[0],
'chars': r[0].end_byte - r[0].start_byte,
'file_path': file_path
}
code_blocks.append(return_dict)
def ts_get_all_code_blocks_old(code_blocks, file_path, node):
"""Use treesitter to get all code blocks"""
#dict has'code_type' 'source' 'start_line' 'end_line' 'chars' 'file_path'
#print('HERRO', type(node))
for child in node.children:
#print(type(child), child)
return_dict = {
'code_type': child.type,
'start_line': child.start_point[0],
'end_line': child.end_point[0],
'chars': child.end_byte - child.start_byte,
'file_path': file_path
}
code_blocks.append(return_dict)
#if child.type != "function_definition" and len(child.children)
ts_get_all_code_blocks(code_blocks, file_path, child)
def parse_file(file_path):
"""take source code file and return pd dataframe"""
# read file
with open(file_path, 'r') as f:
code = f.read()
# Tree-Sitter
parser = Parser()
lang = Language("./tree-go.so", "go")
parser.set_language(lang)
tree = parser.parse(bytes(code, "utf8"))
code_blocks = []
ts_get_all_code_blocks(lang, code_blocks, file_path, tree, bytes(code, "utf8"))
#TODO
# collate imports, assign
collate_types = ['import', 'assign']
tempblock = None
finblocks = []
for block in code_blocks:
if block['code_type'] in collate_types:
if tempblock is None:
tempblock = {k:v for k,v in block.items()}
elif tempblock['code_type'] == block['code_type']:
tempblock['source'] += f"\n{block['source']}"
tempblock['start_line'] = min(tempblock['start_line'], block['start_line'])
tempblock['end_line'] = max(tempblock['start_line'], block['end_line'])
tempblock['chars'] += (block['chars'] + 1)
else:
finblocks.append(tempblock)
tempblock = {k:v for k,v in block.items()}
else:
if tempblock is not None:
finblocks.append(tempblock)
tempblock = None
finblocks.append(block)
df = pd.DataFrame(finblocks)
return df
def get_files_to_parse(root_path, files_extensions_to_parse=['py'], dirs_to_ignore=['tests']) -> list:
"""get all source file paths as list."""
files_to_parse = []
for root, dirs, files in os.walk(SOURCE_DIR):
for name in files:
if (root.rsplit("/", 1)[-1] in dirs_to_ignore) or (name.rsplit('.')[-1] not in files_extensions_to_parse):
continue
temp_path = os.path.join(root, name)
files_to_parse.append(temp_path)
return files_to_parse
def generate_summary(prompt):
prompt = prompt + '\nSummarize the above code: '
response = openai.Completion.create(
model="text-davinci-003",
prompt=prompt,
temperature=0.7,
max_tokens=1024,
top_p=1.0,
frequency_penalty=0.0,
presence_penalty=0.0,
stop=["\"\"\""]
)
return response["choices"][0]["text"]
# nate function to create blob. the blob just contains the file path and the source code.
def blobify(pandaSeries):
return f"file path: {pandaSeries['file_path']}\n {pandaSeries['source']}"
### doing stuff!!
df = parse_file("../../dirserver/src/dirserver/fdpoller.go")
df.to_csv('test.csv')
df["blob"] = df.apply(lambda x: blobify(x),axis=1)
print(type(df))
print(df)
df.to_csv('test_with_blob.csv')
print('startng to generate summary')
df["summary"] = df.blob.apply(lambda x: generate_summary(x))
print('done with generate summary')
df.to_csv('test_with_summary.csv')
|