summaryrefslogtreecommitdiff
path: root/setup.py
blob: 8ff502788bab6c6676aee3eaff1714bcfbaf6967 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
from collections import defaultdict
import os
import sys
import pandas as pd
import openai 
import tiktoken
from openai.embeddings_utils import get_embedding, cosine_similarity

from tree_sitter import Language, Parser

SOURCE_DIR = './'

openai.api_key = os.getenv('END_OF_WORLD')

class TS_Setup_Helper:
    parser: Parser
    ts_obj_path: str
    ext_map: dict

    def __init__(self, ts_object_path):
        self.ts_object_path = ts_object_path
        self.BASH_LANGUAGE = Language(ts_object_path, 'bash')
        self.C_LANGUAGE = Language(ts_object_path, 'c')
        self.CPP_LANGUAGE = Language(ts_object_path, 'cpp')
        self.GO_LANGUAGE = Language(ts_object_path, 'go')
        self.HS_LANGUAGE = Language(ts_object_path, 'haskell')
        self.JS_LANGUAGE = Language(ts_object_path, 'javascript')
        self.PY_LANGUAGE = Language(ts_object_path, 'python')
        self.RS_LANGUAGE = Language(ts_object_path, 'rust')
        self.parser = Parser()

        self.ext_map = {
            'sh': self.BASH_LANGUAGE,
            'c': self.C_LANGUAGE,
            'h': self.C_LANGUAGE,
            'cpp': self.CPP_LANGUAGE,
            'cxx': self.CPP_LANGUAGE,
            'hxx': self.CPP_LANGUAGE,
            'hpp': self.CPP_LANGUAGE,
            'go': self.GO_LANGUAGE,
            'hs': self.HS_LANGUAGE,
            'js': self.JS_LANGUAGE,
            'py': self.PY_LANGUAGE,
            'rs': self.RS_LANGUAGE
        }

        self.qmap = {
            self.BASH_LANGUAGE: ["""(function_definition) @function""", """(variable_assignment) @assign"""],
            self.C_LANGUAGE:    ["""(function_definition) @function""", """(preproc_include) @import"""],
            self.CPP_LANGUAGE:  ["""(function_definition) @function""", """(preproc_include) @import"""],
            self.GO_LANGUAGE:   ["""(function_declaration) @function""", """(method_declaration) @method"""],
            self.JS_LANGUAGE:   ["""[(function) (function_declaration)] @function"""],
            self.PY_LANGUAGE:   ["""(function_definition) @function""", """[(import_statement) (import_from_statement)] @import"""],
            self.RS_LANGUAGE:    ["""(function_item) @function""", """(use_declaration) @import"""]
        }

    def ts_query(self, lang, tree, sexp):
        query = lang.query(sexp)
        return query.captures(tree.root_node)

    def ts_get_all_code_blocks(self, code_blocks, file_path, lang, tree, code):
        """Use treesitter to get all code blocks"""

        # TODO need way to switch between declaration and definition ..
        # e.g. golang does not have function definitions according to treesitter
        results = [ ]
        for query in self.qmap.get(lang):
            print(query)
            results += self.ts_query(lang, tree, query)

        # TODO something like list comprehension here?
        for r in results:
            return_dict = {
                'code_type': r[1],
                'source': code[r[0].start_byte:r[0].end_byte].decode('utf-8'),
                'start_line': r[0].start_point[0],
                'end_line': r[0].end_point[0],
                'chars': r[0].end_byte - r[0].start_byte,
                'file_path': file_path
            }
            code_blocks.append(return_dict)

    def parse_file(self, file_path):
        print('parse')
        """take source code file and return pd dataframe"""
        # read file
        with open(file_path, 'r') as f:
            code = f.read()

        # Tree-Sitter
        extension = os.path.splitext(file_path)[1].lstrip(".")
        lang = self.ext_map.get(extension)
        if lang is None:
            raise NotImplementedError(f"The file extension .{extension} is not implemented")
        self.parser.set_language(lang)
        tree = self.parser.parse(bytes(code, "utf8"))

        code_blocks = []
        self.ts_get_all_code_blocks(code_blocks, file_path, lang, tree, bytes(code, "utf8"))

        collate_types = ['import', 'assign']
        tempblock = None
        finblocks = []

        for block in code_blocks:
            if block['code_type'] in collate_types:
                if tempblock is None:
                    tempblock = {k:v for k,v in block.items()}
                elif tempblock['code_type'] == block['code_type']:
                    tempblock['source'] += f"\n{block['source']}"
                    tempblock['start_line'] = min(tempblock['start_line'], block['start_line'])
                    tempblock['end_line'] = max(tempblock['start_line'], block['end_line'])
                    tempblock['chars'] += (block['chars'] + 1)
                else:
                    finblocks.append(tempblock)
                    tempblock = {k:v for k,v in block.items()}
            else:
                if tempblock is not None:
                    finblocks.append(tempblock)
                    tempblock = None
                finblocks.append(block)
        df = pd.DataFrame(finblocks)
        return df


def get_files_to_parse(root_path, files_extensions_to_parse, dirs_to_ignore=['tests', 'vendor', 'unix']) -> list:
    """get all source file paths as list."""
    files_to_parse = []
    for root, dirs, files in os.walk(root_path):
        # there is probably a better way to do this
        # https://stackoverflow.com/questions/13454164/os-walk-without-hidden-folders
        files = [f for f in files if not f[0] == '.']
        dirs[:] = [d for d in dirs if (not d[0] == '.') and (set(d.split()).isdisjoint(dirs_to_ignore))]
        for name in files:
            #if (dirfix(root).rsplit("/", 1)[-1] in dirs_to_ignore) or (name in dirs_to_ignore) or (name.rsplit('.')[-1] not in files_extensions_to_parse):
            if (name.rsplit('.')[-1] not in files_extensions_to_parse):
                continue
            temp_path = os.path.join(root, name)
            files_to_parse.append(temp_path)
    return files_to_parse

def generate_summary(prompt):
  enc = tiktoken.encoding_for_model("text-davinci-003")
  if (len(enc.encode(prompt)) > 2500):
      return "too long to summarize."

  prompt = prompt + '\nSummarize the above code: '
  response = openai.Completion.create(
    model="text-davinci-003",
    prompt=prompt,
    temperature=0.7,
    max_tokens=1024,
    top_p=1.0,
    frequency_penalty=0.0,
    presence_penalty=0.0,
    stop=["\"\"\""]
  )
  return response["choices"][0]["text"]


# nate function to create blob. the blob just contains the file path and the source code.
def blobify(pandaSeries):
    return f"file path: {pandaSeries['file_path']}\n {pandaSeries['source']}"


### doing stuff!!
ts_helper = TS_Setup_Helper('./ts-languages.so')

code_df = pd.DataFrame()
#files = get_files_to_parse("../../dirserver/src/dirserver/", ts_helper.ext_map.keys(), dirs_to_ignore=['tests', 'vendor', 'unix']):

files = get_files_to_parse("./rs", ts_helper.ext_map.keys())
if len(files) == 0:
    print("didn't find any files to parse", file=sys.stderr)
    exit(1)
for file in files:
    code_df = pd.concat([code_df, ts_helper.parse_file(file)])

code_df["blob"] = code_df.apply(lambda x: blobify(x),axis=1)
print(type(code_df))
print(code_df)

code_df.to_csv('rust_with_blob.csv')

print('startng to generate summary')
code_df["summary"] = code_df.blob.apply(lambda x: generate_summary(x))
print('done with generate summary')

print('generating embeddings')
embedding_model = "text-embedding-ada-002"
code_df["embedding_summary"] = code_df.summary.apply([lambda x: get_embedding(x, engine=embedding_model)])
print('done with generating embeddings')

code_df.to_csv('test_with_summary_and_embeddings.csv')