summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorNate Buttke <nate-web@riseup.net>2023-08-15 23:29:58 -0700
committerNate Buttke <nate-web@riseup.net>2023-08-15 23:29:58 -0700
commit8abc176c440499a4de8406fd58b7d2c0a4e5b9ff (patch)
treed8d89fa1a4c79c52a75c6046de7ac30643fc8718
parent7435e423776c7b35b9c6c9bebba25a44691554bf (diff)
use new 3.5 turbo chat model.
-rw-r--r--server.py40
-rw-r--r--setup.py35
2 files changed, 45 insertions, 30 deletions
diff --git a/server.py b/server.py
index 1cd914c..cd27865 100644
--- a/server.py
+++ b/server.py
@@ -39,18 +39,34 @@ def generate_answer(question):
for i in range(3):
prompt += results.iloc[i]["summary"] + "\n" + results.iloc[i]["blob"] + "\n"
prompt += "\n" + "Answer the following question using the code context given above, and show an example with 'Example'\nQ: " + question + "\nA: "
- response = openai.Completion.create(
- model="text-davinci-003",
- # model="code-davinci-002",
- prompt=prompt,
- temperature=0.7,
- max_tokens=1000,
- top_p=1.0,
- frequency_penalty=0.0,
- presence_penalty=0.0,
- stop=["\"\"\""]
- )
- return response["choices"][0]["text"]
+
+ response = openai.ChatCompletion.create(
+ model="gpt-3.5-turbo",
+ messages=[{"role": "user", "content": prompt}],
+ temperature=0.7,
+ max_tokens=300,
+ top_p=1.0,
+ frequency_penalty=0.0,
+ presence_penalty=0.0,
+ stop=["\"\"\""]
+ )
+ resp = response["choices"][0]["message"]["content"]
+
+ counter = 0
+ outstr = ""
+ for char in resp:
+ if counter == 60:
+ outstr += "\n"
+ counter = 0
+ if char == "\n":
+ counter = 0
+ outstr += " "
+ else:
+ counter += 1
+ outstr += char
+
+ #return [response["choices"][0]["text"], ""]
+ return [outstr, ""]
def add_to_tree(tree: dict, path: str):
parts = PurePosixPath(path).parts
diff --git a/setup.py b/setup.py
index 9efb57c..7bbfd6d 100644
--- a/setup.py
+++ b/setup.py
@@ -146,21 +146,20 @@ def generate_summary(prompt):
if (len(enc.encode(prompt)) > 3000):
return "too long to summarize."
- prompt = prompt + '\nSummarize the above code: '
-
- # response = openai.ChatCompletion.create(
- # model="gpt-3.5-turbo",
- # messages=[{"role": "user", "content": prompt}],
- # temperature=0.7,
- # max_tokens=1024,
- # top_p=1.0,
- # frequency_penalty=0.0,
- # presence_penalty=0.0,
- # stop=["\"\"\""]
- # )
-
- #return response["choices"][0]["message"]["content"]
- return 'herro. this is a test summary'
+ prompt = prompt + '\nSummarize the above code (be succinct): '
+
+ response = openai.ChatCompletion.create(
+ model="gpt-3.5-turbo",
+ messages=[{"role": "user", "content": prompt}],
+ temperature=0.7,
+ max_tokens=300,
+ top_p=1.0,
+ frequency_penalty=0.0,
+ presence_penalty=0.0,
+ stop=["\"\"\""]
+ )
+
+ return response["choices"][0]["message"]["content"]
# create blob. the blob just contains the file path and the source code.
def blobify(pandaSeries):
@@ -234,9 +233,9 @@ def setup(
print('generating embeddings')
embedding_model = "text-embedding-ada-002"
- #code_df["embedding_summary"] = code_df.summary.apply(
- # [lambda x: get_embedding(x, engine=embedding_model)]
- # )
+ code_df["embedding_summary"] = code_df.summary.apply(
+ [lambda x: get_embedding(x, engine=embedding_model)]
+ )
print('done with embeddings')
code_df.to_csv(output_csv_filepath)