summaryrefslogtreecommitdiff
path: root/setup.py
diff options
context:
space:
mode:
Diffstat (limited to 'setup.py')
-rw-r--r--setup.py71
1 files changed, 27 insertions, 44 deletions
diff --git a/setup.py b/setup.py
index 80be931..3003c83 100644
--- a/setup.py
+++ b/setup.py
@@ -1,4 +1,3 @@
-import ast
from collections import defaultdict
import os
import pandas as pd
@@ -12,18 +11,6 @@ SOURCE_DIR = './'
openai.api_key = os.getenv('END_OF_WORLD')
-#def get_block(code, node, code_type, file_path):
-# """combine a bunch of data about a function. return dictionary"""
-# blob = f"{node['pretext']}{ast.get_source_segment(code, node['node'])}"
-# return {
-# 'code_type': code_type,
-# 'source': blob,
-# 'start_line': node['node'].lineno,
-# 'end_line': node['node'].end_lineno,
-# 'chars': len(blob),
-# 'file_path': file_path
-# }
-
def ts_query(lang, tree, sexp):
query = lang.query(sexp)
return query.captures(tree.root_node)
@@ -36,7 +23,7 @@ def ts_get_all_code_blocks(lang, code_blocks, file_path, tree, code):
results = ts_query(lang, tree, """(function_declaration) @function""")
results += ts_query(lang, tree, """(method_declaration) @method""")
- # TODO something like list comprehension here
+ # TODO something like list comprehension here?
for r in results:
return_dict = {
'code_type': r[1],
@@ -48,24 +35,6 @@ def ts_get_all_code_blocks(lang, code_blocks, file_path, tree, code):
}
code_blocks.append(return_dict)
-
-def ts_get_all_code_blocks_old(code_blocks, file_path, node):
- """Use treesitter to get all code blocks"""
- #dict has'code_type' 'source' 'start_line' 'end_line' 'chars' 'file_path'
- #print('HERRO', type(node))
- for child in node.children:
- #print(type(child), child)
- return_dict = {
- 'code_type': child.type,
- 'start_line': child.start_point[0],
- 'end_line': child.end_point[0],
- 'chars': child.end_byte - child.start_byte,
- 'file_path': file_path
- }
- code_blocks.append(return_dict)
- #if child.type != "function_definition" and len(child.children)
- ts_get_all_code_blocks(code_blocks, file_path, child)
-
def parse_file(file_path):
"""take source code file and return pd dataframe"""
# read file
@@ -109,18 +78,27 @@ def parse_file(file_path):
return df
-def get_files_to_parse(root_path, files_extensions_to_parse=['py'], dirs_to_ignore=['tests']) -> list:
+def get_files_to_parse(root_path, files_extensions_to_parse=['go'], dirs_to_ignore=['tests', 'vendor', 'unix']) -> list:
"""get all source file paths as list."""
files_to_parse = []
- for root, dirs, files in os.walk(SOURCE_DIR):
+ for root, dirs, files in os.walk(root_path):
+ # there is probably a better way to do this
+ # https://stackoverflow.com/questions/13454164/os-walk-without-hidden-folders
+ files = [f for f in files if not f[0] == '.']
+ dirs[:] = [d for d in dirs if (not d[0] == '.') and (set(d.split()).isdisjoint(dirs_to_ignore))]
for name in files:
- if (root.rsplit("/", 1)[-1] in dirs_to_ignore) or (name.rsplit('.')[-1] not in files_extensions_to_parse):
+ #if (dirfix(root).rsplit("/", 1)[-1] in dirs_to_ignore) or (name in dirs_to_ignore) or (name.rsplit('.')[-1] not in files_extensions_to_parse):
+ if (name.rsplit('.')[-1] not in files_extensions_to_parse):
continue
temp_path = os.path.join(root, name)
files_to_parse.append(temp_path)
return files_to_parse
def generate_summary(prompt):
+ enc = tiktoken.encoding_for_model("text-davinci-003")
+ if (len(enc.encode(prompt)) > 2500):
+ return "too long to summarize."
+
prompt = prompt + '\nSummarize the above code: '
response = openai.Completion.create(
model="text-davinci-003",
@@ -134,25 +112,30 @@ def generate_summary(prompt):
)
return response["choices"][0]["text"]
+
# nate function to create blob. the blob just contains the file path and the source code.
def blobify(pandaSeries):
return f"file path: {pandaSeries['file_path']}\n {pandaSeries['source']}"
### doing stuff!!
+code_df = pd.DataFrame()
+for file in get_files_to_parse("../../dirserver/src/dirserver/"):
+ code_df = pd.concat([code_df, parse_file(file)])
-df = parse_file("../../dirserver/src/dirserver/fdpoller.go")
-df.to_csv('test.csv')
-df["blob"] = df.apply(lambda x: blobify(x),axis=1)
-
-print(type(df))
-print(df)
+code_df["blob"] = code_df.apply(lambda x: blobify(x),axis=1)
+print(type(code_df))
+print(code_df)
-df.to_csv('test_with_blob.csv')
+code_df.to_csv('test_with_blob.csv')
print('startng to generate summary')
-df["summary"] = df.blob.apply(lambda x: generate_summary(x))
+code_df["summary"] = code_df.blob.apply(lambda x: generate_summary(x))
print('done with generate summary')
-df.to_csv('test_with_summary.csv')
+print('generating embeddings')
+embedding_model = "text-embedding-ada-002"
+code_df["embedding_summary"] = code_df.summary.apply([lambda x: get_embedding(x, engine=embedding_model)])
+print('done with generating embeddings')
+code_df.to_csv('test_with_summary_and_embeddings.csv')